000 01902nam a2200217Ia 4500
999 _c40965
_d40965
003 OSt
005 20201001102821.0
008 160316s1994 xxu||||| |||| 00| 0 eng d
020 _a9780521319881
040 _cnls
082 _a339.500000
_bELL
100 _aEllickson Bryan
245 _aComplete equilibrium : Theory and applications
260 _aCambridge
_bCambridge University Press
_c1994
300 _a394p
_cxix
365 _b Rs. 3,631
505 _aTable of contents List of illustrations; Preface; Acknowledgments; Part I. Exchange: 1. Mathematical prerequisites; 2. Walrasian equilibrium; 3. Pareto optimality and the core; 4. A numerical example; 5. Commodities and prices; 6. Summary; Part II. Production: 7. Geometry of vector spaces; 8. CRS production; 9. Alternative models of production; 10. Public goods and joint supply; 11. Summary; Part III. Aumann's Model: 12. Applying Aumann's model; 13. Dealing with nonconvexity; 14. Measure and integration; 15. Hedonic theory and local public goods; 16. Summary; Part IV. Topology: 17. Introduction to topology; 18. Topologies on vector spaces; 19. Summary; Part V. Best Response: 20. Preferences; 21. Existence of best response; 22. Continuity of best response; 23. Miscellany; 24. Summary; Part VI. Clearing Markets: 25. Homogeneity; 26. Existence of Walrasian equilibrium; 27. Computation of equilibria; 28. The excess demand theorem; 29. Kakutani fixed point theorem; 30. Summary; Part VII. Walras Meets Nash: 31. Noncooperative game theory; 32. Walrasian equilibrium; 33. External effects; 34. Nonconvexity; 35. Nonordered preferences; 36. Summary; Part VIII. What is Competition?:37. The second fundamental theorem; 38. Core equivalence; 39. Infinite dimensional commodity spaces; 40. The large square economy; 41. Summary; Bibliography; Index.
650 _a1. Equilibrium - Economics
700 _a
_a
942 _2ddc
_cBK